

THE 20TH INTERNATIONAL OPERATIONS & MAINTENANCE CONFERENCE IN THE ARAB COUNTRIES

WORKSHOP

"Evaluation of Structures and Infrastructures using Laser Scanning, Geophysics, Photogrammetry and other Advanced NDT methods with Case Studies"

An ACI Standard

Code Requirements for
Assessment, Repair, and
Rehabilitation of Existing
Concrete Structures and
Commentary (metric)
- 1 /

Prof. Mufid Samarai, Senior Advisor-Engineering and Education, UAE

An Initiative by

Organized by

@@@@ #OmaintecConf

THE 20TH INTERNATIONAL OPERATIONS & MAINTENANCE CONFERENCE IN THE ARAB COUNTRIES

PART 1

INTRODUCTION TO MAINTENANCE AND CODES

IMPORTANCE OF MAINTENANCE De Sitter's Law of Fives

A major repair can be expected to cost roughly five

times what routine maintenance would have cost. An all-out replacement will cost five times what major repair would have cost.

The Difference in Repair Cost with Respect to Time (Actual Values)

REPAIR OF A DETERIORATED BUILDING			
DATE REPAIR COST			
2014	250,000		
2019	1,250,000		

	CORROSION PROTECT	TION INSTALLATION FOR A F			
	DATE	REPAIR COST			NA 3-1
	2015	1,000,000		and address of the	
	2018	2,500,000			Children Control
		FACTORY REPAIR	<u>I</u>		
	DATE	REPAIR COST	<u>TIME</u>		
	2010	1,000,000	2 MO	NTHS	
	2018	5,000,000	10 MO	NTHS	
1					

TYPES OF MAINTENANCE

- 1. Routine Maintenance (Cyclic Maintenance)30%
- 2. Preventive Maintenance (Scheduled Maintenance) 12%
- 3. Corrective Maintenance (Emergency maintenance) 58 %

HISTORY OF REPAIR CODES

• UBC 1927 • SBC 1946

• BOCA 1950

<text><text><text><image><text><text><text>

SOUTHERN

HISTORY OF REPAIR CODES

American Concrete Institute Amon activarcan Tech Nate

SECTION LOSS DETERMINATION OF DAMAGED OF CORRODED REINFORCING STEEL BARS

In Contraction does related to a method be electronizing the section box (Fig. 1) of destribution and spacer, succession remains, respiration present how to do do does a section of the section box (Fig. 1) of destribution can be used to does needs the section issue of dolorsmoot suppose and takened suppose on black A standard proceeding can be used to does need the section issue of dolorsmoot suppose and takened suppose on the section of the section of the section of the fraction of the section of the fraction of the section of the section

One instantionary state or prior the out a subsectives, or interpretation of a series of the instantional states in the indicates evaluations by a lightware of strategic production and have of our a resource of enabling conditional (AC 34481 (AC 3 Construction 349 2014) Constructions

The following steps are used to determine enough the section bias. 1 Determine original evolutioning has dissocire There are several options for determining a window

The case has confirmented beam concluding choosing distancements the theoremic distance of the second secon

rendering for size is obtained and cannot be determined haved on the options would apply provided by the second (79, 3). 2. Determine relationships for diameter (0) is dominged coversated second to be relatively be relatively by (1) the second s

History of Repair Codes

80s change in philosophy:

Leave undamaged, unaffected elements alone, and apply new construction rules only to elements of the construction that are damaged

UNIFORM BUILDING CODE 1579 anno

ACI 562M Chapters

Chapter 1—General requirementsChapter 2—Notations and DefinitionsChapter 3—Referenced StandardsChapter 4—Criteria when using this code with IEBCAppendix A—Criteria using this code as stand-alone codeChapter 5—Loads, factored load combinations, and ♦Chapter 6—Assessment, evaluation, and analysisChapter 7—Design of structural repairsChapter 8—DurabilityChapter 9—ConstructionChapter 10—Quality assurance

American Concrete Institute

Codes vs. Guidelines

Codes

- Adopted by regulatory agencies
- Mandatory language (shall not should)
- Establish required practice
- ACI 318, ASCE 7, IBC, IEBC codes
- Guidelines
 - Non-mandatory language (should not shall)
 - Establish recommended practice
 - ACI 364, ICRI documents guidelines

THE 20TH INTERNATIONAL OPERATIONS & MAINTENANCE CONFERENCE IN THE ARAB COUNTRIES

PART TWO

DURABILITY AND CORROSION

International Gro موعة أكزيكون الدولية International Business U

9000 #OmaintecConf

Service Life Estimation Clear's Simplified Equation

- t: Service Life in Years
- S: Concrete cover in mm

R= w/c ratio

K: Cl⁻ Content in PPM

SULFATE INGRESS INTO CONCRETE

The effect of SO₄⁻² Ingress into concrete durability is significant for reinforced and non reinforced concrete

Factors Affecting Sulfate deterioration Rate (K_s):

- W/C

- SO₄

- C₃A Content
- Curing Period
- Temp: 40/ 50 °C

Carbonation of Concrete Cover

Time for carbonation to reach reinforcement (years)

External concrete sheltered from rain

cover w/c	10 mm	30 mm
0.7	5	45
0.5	15	135

Concrete cover protects the reinforcing steel with its alkaline nature (PH level ~ 13). This protection diminishes by ingress of CO_2 from the atmosphere and reduces the PH level to 9. At this stage concrete is no longer protecting the steel and in the presence of moisture and O_2 , steel begins to corrode

COST OF CORROSION

• Report by Visiongain calculates that the global oil and gas corrosion prevention market was worth \$18.72 billion.

• The annual cost of corrosion worldwide is estimated at USD \$ 2.2 trillion which is about 3% of the world's GDP.

THE 20TH INTERNATIONAL OPERATIONS & MAINTENANCE CONFERENCE IN THE ARAB COUNTRIES

PART THREE EVALUATION AND TESTING

International Grou جموعة أكريكون الدولية International Business Ur

€000 #OmaintecConf

Investigation

Sample of Preliminary inspection Form

Structure			R	ating		
Part of structure	0	1	2	3	4	5
Date of inspection	None	Very slight	Slight	Moderate	Severe	Very sever
Defects		(31			Cen 1.425	2005
Cracking						
Plastic shrinkage/settlement						
Thermal contraction						
Structural						
Crazing						
Rust staining						
Water leakage						
Pop-outs						
Spalling						
Loss of surface						
Abrasion						
Chemical attack	· []					
Efflorescence						
Others (specify below)						
Existing repairs (if any)			1155			
Delamination/debonding						
Cracking						
Others (specify below)						
Supplementary documentation	Details (including refere	nce numbe	ers etc)		
Sketches						
Photographs						
Others (specify below)						

Inspection	
Inspector ID:	Areas inspected: Exterior only Exterior and
Building Description	Type of Construction
Building name:	Wood frame Concrete shear wall
Address:	Tilt-up concrete Reinforced masonry
6.37	Concrete frame Other:
Building contact/phone:	Primary Occupancy
Number of stories above ground: below groun	c: Dwelling Commercial Gove
Approx. "Pootprint area" (square feet):	Other residential Offices Histe
Number of residential units:	Public assembly Industrial Scho
nomosi yi issiotinal onus not naonave.	
Evaluation	Estimated Building D
Investigate the building for the conditions below and ch	eck the appropriate column. (excluding content
Observed Conditions:	Minor/None Moderate Severe None
Collapse, partial collapse, or building off foundation	
Building or story leaning Racking damage to walls, other structural damage	
Chimney, parapet, or other falling hazard	
Ground slope movement or cracking	0 0 0 00-100%
Other (specify)	
Comments:	
Posting Choose a posting based on the evaluation and team jud an Unsafe posting, Localized Severe and overall Moder placard at main entrance. Post RESTRICTED USE and I INSPECTED (Green placard) RESTR Record any use and entry restrictions exactly as writte	gment. Severe conditions endangering the overall building are groun te conditions may allow a Restricted Use posting. Post INSPECTEI INSAFE placards at all entrances. ICTED USE (Yellow placard) UNSAFE (Red placard) n on placard:
Posting Choose a posting based on the evaluation and team jud an Unsafe posting. Localized Severe and overall Moder placard at main entrance. Post RESTRICTED USE and I INSPECTED (Green placard) RESTF Record any use and entry restrictions exactly as writte Further Actions Check the boxes below only if f Barricades needed in the following areas: Detailed Evaluation recommended: Stry	gment. Severe conditions endangering the overall building are groun te conditions may allow a Restricted Use posting. Post INSPECTEL INSAFE placards at all entrances. ICTED USE (Yellow placard) UNSAFE (Red placard) n on placard:

Copyright 1995-07, Applied Technology Council

Permission is granted for unlimited, non-exclusive, non-commercial use and distribution of ATC evaluation forms, provided that this Copyright Notice appears on all copies and the Appl

Testing is performed in order to obtain sufficient information on the condition of the deteriorated structure so that the appropriate remedial repair method is implemented.

NO TESTS SHALL BE CARRIED OUT UNLESS IT IS KNOWN WHAT THE RESULTS WILL BE USED FOR

TYPES OF TESTS

• DESTRUCTIVE TESTS:

These conventional methods enable the strength of the concrete to be measured by way of cores or cubes cut from the concrete. However, this is not possible in all cases and especially not for slender members.

• NON-DESTRUCTIVE TESTS:

By definition, the strength properties are not measured directly so some other properties are measured and the strength estimated by calibration. Naturally, these methods have the great advantage that concrete is not damaged. For example: Ultra-sound test and Schemed Hummer Test.

• PARTIALLY DESTRUCTIVE TESTS:

In these tests, the concrete is tested to failure but the destructive resulting is very localized and member under test is not weakened to any significant extent For example Core test. .

ULTRA SONIC MATERIALS ANALYSIS (PULSE VELOCITY) (ASTM C 597)

- Detecting Cracks, Voids, And Flaws To Find The Damage Pattern
- It Can Be Used To Control
 The Effectiveness Of Repair By
 Injection Technique.

HAMMER TAPPING OR CHAIN DRAGGING ASTM D4580

ADVANTAGES

- Rapid and well-established field collection method
- •Ability to identify severe to moderate delamination
- •Field method is simple
- •Mapping is not difficult and Limited training required

LIMITATIONS

 cannot pick up the onset of delamination

•Must be performed when traffic noise is minimal

 Generally ineffective with asphalt overlays

Results are subjective

REBOUND HAMMER (ASTM C803/C803M-17)

Advantages Speed Low Cost Relatively low expertise required

Limitations

- Smoothness of the surface
- fixity of the samples
- Size shape
- Type of coarse aggregates

HALF CELL POTENTIAL

It measures the electrical potential on the surface of the steel to qualitatively estimate its likelihood of corrosion.

Potential P (mV)	Risk of corrosion
P > -200 mV	5 %
-350< P< -200	50 %
P< -350	95 %

CORROSION POTENCIAL (ASTM C876)

• Corrosion Rate (ASTM G59)

 Provides instantaneous corrosion rates

Resistivity : It used to qualitatively estimate the likelihood of corrosion Rate

Resistivity R (ohm cm)	Likely corrosion Rate
R <5000	Very High
5000< R< 10000	High
10000 <r<20000< td=""><td>Low</td></r<20000<>	Low
R>20000	Negligible

DESTRUCTIVE TESTS CORES

ASTM C 42-04, "Standard Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete,"

Factors that influence measured core compressive strength:

Length/diameter ratio of core, Diameter of core, Direction of drilling, Method of capping Reinforcement) The Concrete Society and BS 1881: Part 120 suggest that cores should be kept as short as possible ($I/d = 1.0 \rightarrow$ 1.2).

Correction factors are minimized if the core length/diameter ratio is close to 2.0 and this view is supported by ASTM C42

PARTIALLY DESTRUCTIVE TEST METHODS

<u>The most common partially destructive tests</u> <u>are-- pullout,-- pull-off, --penetration resistance-</u> <u>- break-off, Windsor Probe</u>

METHOD	STANDARDS		PRINCIPLE FEATURES
	ASTM	BS 1881	
Rebound hammer	C805		Existing concrete, best used comparatively
Pull out	C900	207	Existing concrete , high variability
Pull off		207	Existing concrete surface or partially cored
Break off	C1150	207	New construction or Exsisting concrete

Windsor Probe Test:

LOAD TEST

437.2-13 Code Requirements for Load Testing of Existing Concrete Structures and Commentary

ACI 437.2-13

Code Requirements for Load Testing of Existing Concrete Structures (ACI 437.2-13) and Commentary

Reported by ACI Committee 437

American Concrete Institute*

LASER SCANNING TECHNOLOGIES

- Laser scanning is a geomatic method that allows obtaining the 3D geometry of objects' surfaces automatically by using Light Detection and Ranging (LiDAR)
- The instrument can compute the relative position of the points measured from its surroundings providing the most primitive 3D model as a point cloud.

CLOSE RANGE PHOTOGRAMMETRY

• The precise geometric information obtained from photogrammetry is frequently used in structural analyses

 Among the common applications to this domain is to obtain deformation measurement under laboratory tests and real structures.

GEOPHYSICS

- Geophysical prospection was developed as a set of methods to study the interior of the Earth with minimum intervention by measuring physical properties on its surface.
- Nowadays, these geophysical prospection surveys are the usual methodologies applied in the assessment of civil engineering structure and infrastructure

GROUND PENETRATING RADAR

- This method is related to the analysis of signals amplitude transmitted and received by dipole antennas
- This method is a geophysical technique that relies on the propagation of a short electromagnetic pulse (1-20ns) in the frequency band of 10 MHz-2.5 GHz to obtain information.

INFRARED THERMOGRAPHY

- Infrared thermography is a technique based on the acquisition of the thermal radiation of the bodies suing thermographic cameras.
- It produce an image of the radiation captured thought conversion of the radiation values to temperature values.
- The infrared band presents wavelength values between visible (400-750mm) and microwave bands (1mm-1m)

MULTISPECTRAL IMAGING

 In this technique, different regions of the electromagnetic spectrum are extracted from one or more sensors and assessed in the form of a 2D image.

 It offers a decisive advantage and represents new ways to analyze building structures.

THE 20TH INTERNATIONAL OPERATIONS & MAINTENANCE **CONFERENCE IN THE ARAB COUNTRIES**

PART FOUR

CRACKS, REPAIR TECHNIQUES, AND MONITORING

9000 #OmaintecConf

An Initiative by

Organized by

INTRODUCTION TO CRACKING AND REPAIR

- WHILE CONCRETE LOOK NICE WHEN THEY ARE NEW, OVER TIME THE CONCRETE CAN CHIP, CRACK AND CRUMBLE.
- CRACKS FORM WHEN THE TENSILE STRENGTH OR TENSILE STRAIN EXCEEDS THAT OF CONCRETE.

CLASSIFICATION OF CRACKS

Cracks maybe separated into two classes for the purpose of deciding upon the type of repair.

a) DORMANT CRACKS .

- 1) fine cracks:
- 2) wide cracks:
- 3) fractures :

b) LIVE CRACKS.

Causes and Control of Cracking

ACI 224.1R-07

REPAIR OF CRACKS

Active cracks (Live cracks) are sealed with FLEXIBLE material to support the effect of its movements

- sealing of cracks can be used where structural repair is not necessary
- A cut is made along the length of crack using a saw.
- Clean the crack by sandblasting or by using compressed air or a water jet.
- Provide bond breaker at base if crack is active
- Width-to-depth ratio ≥ 2

Repair of Cracks

Repair of cracks that are not expected to grow in the future (DORMAT or "DEAD" cracks):

- 1. Painting
- 2. Chemical grouting
- 3. Routing and Sealing
- 4. Dry Packing
- 5. Drilling and Plugging
- 6. Epoxy Injection
- 7. Grouting
- 8. Polymer Impregnation
- 9. Autogenous Healing

Repair- Reinstatement with Mortar

Drilled anchor fixing

Sealing strip

Concrete Placement

Surface preparation requires removal of loose and deteriorated concrete, and also includes concrete removal behind exposed bars.

After completion of removals and cleaning, formwork is erected to enclose cavity.

When form is fully pressurized and filled, a valves are closed.

Repair- Cathodic Protection

It is used to prevent or reduce corrosion rates. It works by connecting the metal reinforcement to another material which is anodic in relation to the metal reinforcements. The metal becomes a cathode and its corrosion is reduced. Two systems are used:

Sacrificial anode: It consists of small zinc, or magnesium blocks tie around reinforcements at 50 to 75 cm. They are more reactive than steel and reacts with chloride faster.

Impressed Current System: Inert material (mesh) connected to a DC power supply so that the reinforcement will stay protected in a cathode state

Galvanic Cathodic Protection System

Types:

- Point Anodes
- •Embedded and Mesh Anodes
- •Surface Mounted Anodes
- Jacketing Systems

SEVERAL METHODS TO STRENGTHEN A STRUCTURE

Conventional:

- Concrete enlargement
- Supplemental structural steel

Post-Tensioning

FRP

- Structural strengthening is required to address: Existing strength deficiency
- Higher new design loads
- Effects of wind and earthquake loads

APPLICATION OF FRP COMPOSITES

- The lightweight, high strength and corrosion resistance of fiber-reinforced polymers (FRP) make them ideally suited for quick and effective structural repairs.
- As a result, they have been favored for conducting emergency bridge repairs where <u>speed is of the</u> <u>essence</u>.

DESIGN OF STRUCTURAL REPAIRS

FRP Externally bonded (ACI 440.2R)

- Internal reinforcement (ACI 440.1R)
- Internal P-T (ACI 440.4R)

Strengthening Using FRP Application

- A strengthening system was designed and applied to gain at least 30 % extra shear load carrying capacity.
- ACI 440.2R guideline was used to calculate the additional shear strength provided using carbon fiber reinforced polymer (CFRP) sheets.
- The CFRP sheets used in this case study has the following properties mentioned in the table below:

Properties	Value
Туре	Carbon flexible sheet
Configuration	U shape discrete strips in vertical scheme
Width (W _{FRP})	100 mm
Spacing (S _{FRP})	200 mm center to center of CFRP strips
Thickness (t _{FRP})	0.167 mm
Tensile Modulus (E _{FRP})	230 GPa
Elongation at rupture (ϵ_{FRP})	2.1%

 Before applying FRP sheets, the major cracks in the members were injected with structural epoxy.

Epoxy injection

Primer coat application

THE 20TH INTERNATIONAL OPERATIONS & MAINTENANCE CONFERENCE IN THE ARAB COUNTRIES

 Assessment & Repair of a Reinforced Concrete Building with Signs of Deterioration using ACI 562M-16 Code

An ACI Standard	CASE STUDY	2 0 1 8
Code Requirements for Assessment, Repair, and Rehabilitation of Existing Concrete Structures and Commentary (metric)		IFBC [®]
Reported by ACI Committee 562	Prof. Mufid Samarai, Senior Advisor- Sahara Consultancy	A Hember of the International Code Family*
	Management	INTERNATIONAL EXISTING BUILDING CODE"

THE 20TH INTERNATIONAL OPERATIONS & MAINTENANCE CONFERENCE IN THE ARAB COUNTRIES

EXERCISES

6000 #OmaintecConf

Image	Type of Deterioration and Cracking			
	cracking	Deusting	Frozen fersh concrete	
	delamination	Excessive retarder	sulfates	
	Surface Scaling	Corrosion of steel	Dusting	
	Chloride induced corrsion	sulfates	Excessive retarder	
	cracking	Delamination	sulfates	

Image	Type of Crack		
	Crazing	delamination	Plastic Settlement
	scaling	Drying Shrinkage	Crazing
	Constructional movement- Loss of Support	Structural Crack	Plastic Settlement
2 107	Constructional movement- Loss of Support	Structural Crack	D-Cracking

Image	Test		
150 80 8 15 150 80 150 80 1	Half-cell electrical potential (Corrosion Detection)	Ultrasonic velocity	Schemidt Rebound hummer
	Permeability test	Schemidt Rebound hummer	Penetration Resistant
	Schemidt Rebound Hummer	Ultrasonic Velocity – Drone Inspection	Half-cell electrical potential (Corrosion Detection)

Image	Method of Repair		
	Crack Injection	Cathodic Protection	Anchor Resin
	Crack Injection	Cathodic Protection	Anchor Resin
	Water Jetting	Non-Explosive Demolition Agent	Power Breaker
	Fiber Reinforced Polymer	Crack Injection	Cathodic Protection

Image	Method of Repair		
	Preliminary evaluation	Faulty concrete, poor workmanship	Chlorides Attack
	Preliminary evaluation	Cathodic Protection	Anchor Resin
	Cathodic Protection	Fiber Reinforced Polymer	Load Test
	Non-Explosive Demolition Agent	Shotcrete	Crack Injection